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Abstract

Nomograms have three scales, each of which may be straight or curved.
I show that any nomogram with three straight scales is equivalent to a
nomogram with three parallel scales X (u)+Y (v)+W(w)= 0. This character-
izes the nomograms made of straight scales.

Any nomogram with two or three straight scales can be converted to the
functional form F1(u)+F2(v)F3(w)+F4(w)= 0 and conversely.

Saint Robert’s criterion provides a test for determining whether a func-
tion can be represented with three parallel scales and a recipe for construct-
ing the scales if so. I show how to extend the criterion to nomograms with
two or three straight scales. Thus, if a function can be represented with two
or three straight scales, this recipe will produce a nomogram for it.

Three straight scales This is a short proof that if a nomogram is made of
three straight-line scales in any orientation, it is equivalent to a nomogram with
three parallel straight line scales. In other words, you don’t get any additional
expressive power by allowing straight-line scales to lie in non-parallel orienta-
tions. This result is useful because it characterizes the kinds of nomograms you
can make with three straight scales.

Proof. Suppose a nomogram is given by three straight scales along distinct lines
U , V and W . By using a homography, we may assume without loss of generality
that U and V are parallel. If W is already parallel to these two, we are done.
Otherwise, W crosses U and V once each; we can use a shear transform to ensure
that W is perpendicular to U and V . But this is now a divider-type1 nomogram
which we also know can be represented by three straight scales.

1Also called an N-type or Z-type nomogram. I use the term divider-type because the nomogram
is useful for calculating divisions, and because the perpendicular scale visually divides the other
two.
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Divider-type lemma We made use of the fact that divider-type nomograms
can be represented in parallel scale form. Here’s the proof.

Proof. The simple divider-type nomogram F(u,v,w)= det

0 u 1
1 v 1
w 0 1

= 0 can be

separated into parallel scale form as log(u)−log(v)+log
( w−1

w
)= 0, which you can

confirm using the criterion of Saint Robert. This result holds even if we replace u
v and w with smooth functions of those respective variables, and hence (through
a suitable homography) it holds for any divider-type nomogram.

One curved scale By similar reasoning, we can show that any nomogram
with two straight scales and one curved scale can be put in the form F(u,v,w)=
F1(u)+F2(v)F3(w)+F4(w), and conversely.

Proof. If a nomogram has one curved scale and two straight scales, then by
homography you can map the straight scales onto the vertical lines x = 0 and x =

1. You end up with a nomogram of the form F(u,v,w)= det

 u 0 1
v 1 1

f1(w) f2(w) 1

=

0. Note the curved W scale. By expanding the determinant, you can see that
F(u,v,w)= u( f1 −1)−vf1 + f2.

There’s a tradeoff between how nice the determinant looks and how nice the
functional form looks. You can swap out the variables f1 and f2 with the pair f3
and f4, defined by

f3 =− f1

f1 −1
, f4 = f2

f1 −1

This is a reversible transformation whose inverse is:

f1 = f3

1+ f3
, f2 =− f4

1+ f3

These variables simplify the form of F(u,v,w)= u+vf3+ f4 at the expense of

a more complicated determinant F(u,v,w)= det

 u 0 1
v 1 1
f3

1+ f3
− f4

1+ f3
1

 .

Confirming and constructing straight scales Given an equation F(u,v,w)=
0, there is a simple test to determine if F can be represented with straight scales,
as a nomogram of the form X (u)+Y (v)+Z(w) = 0. You take derivatives to com-
pute the quantity

R(u,v,w)≡ ∂1F
∂2F

.

Then u and v have straight scales just if:

∂1∂2 log(R)= 0.
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This is the criterion of Saint Robert. Furthermore, you can construct the
functional form of X , Y and Z by computing:

log(∂1X )=
∫

du∂1 log(R) solve for X (u)

∂1Y = R/∂1X solve for Y (v)

Finally, to find Z(w), we solve F(u,v,w) = 0 for u or v; say, we express v̂ as
a function of the other two variables. We know that Z(w) = −X (u)−Y (v) =
−X (u)−Y (v̂(u,w)). The function on the left depends only on w; hence we can
eliminate u from the right hand side to obtain a pure expression of w.

I haven’t seen it mentioned, but an analogous recipe works to check whether a
nomogram can be represented with two or three straight scales—a more general
case. As we’ve seen, such a nomogram has the form

F(u,v,w)= F1(u)+F2(v)F3(w)+F4(w)= 0.

If we compute Saint Robert’s R for this expression, we obtain:

R = ∂1F
∂2F

= F ′
1(u)

F ′
2(v) ·F3(w)

.

(F3 is not a derivative.) Note that when F can be represented with three
straight scales rather than two, R does not depend on w.

Now, behold, log(R) is the sum of a function of u, a function of v, and a
function of w—it has the form log(R)= X+Y+Z (!). We can therefore recursively
use Saint Robert’s recipe on the function log(R) to solve for F ′

1(u), F ′
2(v) and

F3(w). Finally, F4(w)= F(u,v,w)−F1(u)−F2(v)F3(w).

1 Finding the parallel scales

Saint Robert’s criterion allows you to determine, by taking derivatives, whether
F(u,v,w) = 0 can be equivalently written in the separated form X (u)+Y (v)+
Z(w)= 0, in which case it can be nomogrammed using three parallel scales.

Saint Robert also supplies a recipe for actually constructing the functions
X ,Y , Z. By taking appropriate integrals, you can build two of the functions
X (u) and Y (v) out of F(u,v,w) and its derivatives. In the final step, you use
the constraint F(u,v,w)= 0 and X (u)+Y (v)+Z(w)= 0 to solve algebraically for
Z(w). Specifically, you start with Z =−X (u)−Y (v), which is a function of u and
v, and look for a way to eliminate all references to u and v in favor of w, using
the constraint that F(u,v,w)= 0.

This last step usually feels like an algebraic miracle. Can you always solve
for Z(w) like this? In this section, I’ll put the process on firm ground by showing
that indeed you can.
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What we need to show You have the original function to be nomogrammed,
F(u,v,w) = 0. You know it is possible to put it in the equivalent form X (u)+
Y (v)+Z(w) = 0 (such that F = 0 if and only if X +Y +Z = 0) but so far you only
know two of the functions X (u) and Y (v). You are looking for the last function
Z(w), which will require some algebraic manipulation.

First, you can use your functions X (u) and Y (v) along with the constraint
X +Y +Z = 0 to write Z as a function of u and v: Z̃(u,v)=−X (u)−Y (v).

Next, somehow you have to algebraically manipulate Z̃ as a function of w
instead of as a function of u and v. Formally, the constraint F(u,v,w) = 0
implicitly allows you to solve for w as a function of u and v. Call this func-
tion ŵ(u,v). You’re looking for a function Z(w) which allows you to factor Z̃ as
Z̃(u,v)= Z ◦ ŵ(u,v).

To prove that this is always possible, we need two results: first, a powerful
theorem that given two functions f (x, y) and g(x, y), you can find a way to factor
f as f = h ◦ g if and only if the Jacobian of f and g is zero. Next, to apply this
theorem, we need to show that indeed the Jacobian of Z̃ and ŵ vanishes.

Theorem Suppose f and g are smooth real-valued functions defined on a
neighborhood Ω ⊆ R2 and whose partial derivatives never vanish2. Then the
Jacobian ∂( f , g) vanishes if and only if there exists a function h : R→ R such
that f = h◦ g.

Proof. If f = h◦g, then the chain rule shows that the Jacobian of f and g is zero,
establishing one direction of the proof.

For the other direction, suppose we solve the equation g(u,v) = w⋆ for v.
(Formally, we can evoke the implicit function theorem to obtain the unique solu-
tion v̂(u,w⋆) = v. The required partial derivative ∂2 g is never zero, by assump-
tion.)

Then g(u, v̂(u,w⋆))= w⋆ throughout, which shows that this expression doesn’t
actually depend on u. To put it another way, the derivative ∂1 g(u, v̂(u,w⋆)) is
zero everywhere. If we expand out this derivative, we get an expression equal
to zero that we can solve for ∂1v̂:

∂1v̂(u,w⋆)=−∂1 g(u, v̂(u,w⋆))
∂2 g(u, v̂(u,w⋆))

(1)

Next, we know that v̂(u, g(u,v)) = v for any u and v, which means that we
can expand f (u,v) into the unwieldy expression f (u, v̂(u, g(u,v))). Defining, for
shorthand,

ζ(u,w⋆)≡ f (u, v̂(u,w⋆)),

we have f (u,v)= f (u, v̂(u, g(u,v)))= ζ(u, g(u,v)) everywhere.

2Nomogrammable functions have this nondegeneracy property almost everywhere. It ensures
that given any two variables, you can solve uniquely for the third. (Or at least, there’s a discrete
number of solutions, rather than a whole interval of solutions.)
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I claim that the value of ζ(u,w⋆) does not depend on its first argument, in
which case we can replace it with the single function Z(w) = ζ(u0,w) and have
f (u,v)= Z(g(u,v)) as we wanted.

Indeed, we can see that the derivative ∂1ζ is zero:

∂1ζ= D f (u, v̂) · 〈1,∂1v̂〉
= ∂1 f (u, v̂)+∂2 f (u, v̂) ·∂1v̂
∝ ∂1 g(u, v̂)+∂2 g(u, v̂) ·∂1v̂ {Jacobian ∂( f , g)= 0}

= ∂1 g(u, v̂)+∂2 g(u, v̂) ·−∂1 g(u, v̂)
∂2 g(u, v̂)

{eqn (1)}

= 0.

Here, we’ve made use of the fact that if the Jacobian of two functions is
zero, then their gradients are proportional: ∂( f , g) = 0 ⇔ D f ∝ D g. Indeed, the
Jacobian is the dot product of D f with a vector perpendicular to D g:

∂( f , g)≡ ∂1 f ∂2 g−∂2 f ∂1 g = 〈∂1 f ,∂2 f 〉 · 〈∂2 g,−∂1 f 〉.

Hence the dot product is zero if and only if the gradients D f and D g are parallel.

In short, we’ve found a function Z(w)≡ ζ(u0,w)= f (u0, v̂(u0,w)) such that

f (u,v)= ζ(u, g(u,v))= ζ(u0, g(u,v))= Z(g(u,v))= Z ◦ g

as required.


